International Battery Seminar Fort Lauderdale, FL March 20 – 23, 2017

Hybrid Energy Storage Systems at Siemens Mobility Division

Dr. Michael Meinert Senior Expert Centre of Expertise Energy Storage Systems Mobility Division

© Siemens AG 2017 - All rights reserved.

siemens.com/mobility

Siemens has an innovative history – Rail Systems are electric driven since more than 130 years

SIEMENS

© Siemens AG 2017 – All rights reserved.

Slide 2 23rd of March 2017

Agenda

Why hybridization of energy storage systems?

Worldwide first application for HES-system – QEC project

Development and Engineering of energy storage systems at Siemens Mobility Division

© Siemens AG 2017 – All rights reserved.

Slide 3 23rd of March 2017

SIEMENS

Hybrid-ESS installed on tram's roof at depot of customer MTS (Lisbon)

Tractive force normal Tractive force Cap

Tractive force Battery

- Tractive resistance 1%

Tractive resistance 2%

Tractive force NVC

© Siemens AG 2017 – All rights reserved.

Slide 4 23rd of March 2017

Why hybridization of energy storage systems? The specific parameters for energy-efficient operation and operation w/o OCL are in an other range compared to the automotive sector

> 1 h 30 min 10 min 1000 operation wooC batter auxiliary Specific Energy Density (Wh/kg) 1 min Lilon (High Energy) Js_{efficient} energy-efficient pperation 10 s Cell to lon (High Power) 100 System level NIMH hybrid eak power and high bus or throughput 10 DE Cell level 1 **s** system level 1 10 100 1000 10000 Specific Power Density (W/kg)

© Siemens AG 2017 – All rights reserved.

Slide 5 23rd of March 2017

Mobility Division, CoE ESS, Dr. M. Meinert

Why hybridization of energy storage systems? HES (Hybrid ESS) is the complementary combination of benefits

Double-Layer Capacitors (DLC)

DLC-units ensure highest performance and short charging times

© Siemens AG 2017 – All rights reserved.

.

Mobility Division, CoE ESS, Dr. M. Meinert

High performance batteries

Batteries provide highest energy capacity for longer travelling time without overhead contact line as well as unexpected stops

water-cooled lithium ion battery module

battery-container with chiller

SIEMENS

Slide 6 23rd of March 2017

Agenda

Why hybridization of energy storage systems?

Worldwide first application for HES-system – QEC project

Development and Engineering of energy storage systems at Siemens Mobility Division

© Siemens AG 2017 – All rights reserved.

Slide 7 23rd of March 2017

Worldwide first application for HES-system – QEC project **Project overview about Qatar Education City – People Mover System**

© Siemens AG 2017 – All rights reserved.

SIEMENS

Customer	Qatar Foundation
Contract awarded	May 16, 2012
Route length	Approx. 12 km
Number of stations/stops	4 + 20
Vehicles	19 Avenio trams with Hybrid Energy Storage System
Operation mode	On-sight operation
Planned completion: North Campus	2017
Planned completion: South Campus	2017/2018

Slide 8 23rd of March 2017

Worldwide first application for HES-system – QEC project **"Through the desert without catenaries" – Special features of this project**

First rail project in Qatar

High standards of design and architecture: QEC is an expression of the future vision of Qatar

Catenary free operation between stations / stops

Use of a new HES-system

- High climatic requirements Daily temperatures over 50°C
 - High humidity
- High dust load
- Occasional heavy rain

High safety requirements

Siemens: operation and maintenance for 3 years

© Siemens AG 2017 – All rights reserved.

Slide 9

23rd of March 2017

Mobility Division, CoE ESS, Dr. M. Meinert

Worldwide first application for HES-system – QEC project Avenio: 100 % low floor tram

SIEMENS

Number of vehicles	19 vehicles
Year of delivery	2015 - 2016
Configuration	3 cars (bi-directional operation)
Wheel arrangement	Bo' 2' Bo'
Vehicle length	27,700 mm (over coupling)
Vehicle width	2,550 mm
Gauge	1,435 mm
Capacity (4 P/m²)	165 incl. 56 seats/3 tip-up seats
Floor height	350/435 mm
Special features	Adaptation to climatic conditions; Vehicle for fully catenary-free operation; WiFi and Infotainment; 3 double doors each side

© Siemens AG 2017 – All rights reserved.

Slide 10 23rd of March 2017

Worldwide first application for HES-system – QEC project Technical implementation on the middle car

SIEMENS

© Siemens AG 2017 – All rights reserved.

Slide 11 23rd of March 2017

Worldwide first application for HES-system – QEC project Traction electric circuit diagram and system test

SIEMENS

© Siemens AG 2017 – All rights reserved.

Slide 12 23rd of March 2017

Worldwide first application for HES-system – QEC project Principle for operation of Non-Visible Contact line (NVC)

SIEMENS

- Trams run without overhead contact line between stations
 (typical distance of 300 ... 500m)
- The tram is supplied by hybrid energy storage system and/or local charging units and/or overhead contact lines
- At local charging units (in stations) the energy storage system is recharged within the dwell time of 20 s
- The rigid conductor rail is used recharging of the hybrid energy storage system when the panto has its mechanical contact, especially for tram's acceleration
- The local charging units are passiv (DC 750 V)

© Siemens AG 2017 – All rights reserved.

Slide 13 23rd of March 2017

Mobility Division, CoE ESS, Dr. M. Meinert

Design parameter

Worldwide first application for HES-system – QEC project Circuit diagram of Local Charging Unit (LCU)

© Siemens AG 2017 – All rights reserved.

Slide 14 23rd of March 2017

Mobility Division, CoE ESS, Dr. M. Meinert

Worldwide first application for HES-system – QEC project **Charging Principles as smart but simple design**

- NVC is designed considering the use of well-known components/subsystems and their electrical and mechanical interactions based on intelligent interface management
- Use of ramps for a smooth contact between conductor rails and pantograph
- Automatic energy flow control / optimization by predicted operation to avoid arcs
- No "intelligence" in charging stations

© Siemens AG 2017 – All rights reserved.

Slide 15 23rd of March 2017

Worldwide first application for HES-system – QEC project Simulated example of energy usage @ EOL

© Siemens AG 2017 – All rights reserved.

Slide 16 23rd of March 2017

Mobility Division, CoE ESS, Dr. M. Meinert

Worldwide first application for HES-system – QEC project Balanced design for load cycles and emergency scenario

© Siemens AG 2017 – All rights reserved.

Slide 17 23rd of March 2017

Mobility Division, CoE ESS, Dr. M. Meinert

Worldwide first application for HES-system – QEC project **Comparison of calculation and measurement is proven**

Slide 18 23rd of March 2017

Mobility Division, CoE ESS, Dr. M. Meinert

Agenda

Why hybridization of energy storage systems?

Worldwide first application for HES-system – QEC project

Development and Engineering of energy storage systems at Siemens Mobility Division

© Siemens AG 2017 – All rights reserved.

Slide 19 23rd of March 2017

Development and Engineering of ESS A continuous development allows the use of ESS in railway applications

SIEMENS

Technology- Scouting	1999 – 2001:	BMBF-Study ALTAS (Alternative traction systems) → Recommendation of electric energy storage unit
R&D-projects	2001 – 2006:	Development and Test of electric energy storage unit → Recommendation of prototyping at customer's site
	2007 – 2016:	Hybrid Energy Storage System installed on a tram south of Lisbon and supervision for "lessons learnt"
Creation of Products	 Sitras MES / HES Sitras ESM 125 Sitras SES Sitras LCU 	Double-layer capacitor / combination with traction battery Core element for mobile and stationary ESS Stationary ESS for mass transit Local charging unit, galvanic contact
Synergies due to other R&Ds	 RailEnergy EnergyCap CleanER-D Osiris 	EU-funding, Definition of duty cycles for main line BMWi-funding, Doubling of energy density EU-funding, SP7 Hybridization for diesel-driven main line, Simu-Tool EU-funding, Definition of duty cycles for mass transit, traction battery
Market development	 Presentations for customers and press (Rollout) in Lisbon Support for sales department Conferences, fairs, publications and trainings (RailAcademy, extern) Expert within two standardizations on IEC-level (series hybrid, Lithium Ion traction batteries) 	

© Siemens AG 2017 – All rights reserved.

Slide 20 23rd of March 2017

Development and Engineering of ESS HES in operation since 2008 in Lisbon, Portugal

SIEMENS

Only the combination of capacitors and traction batteries

- Provides highest availability and flexibility for a tram system without catenary
- > is able to cover all emergency situations

The recovery and storage of braking energy results in

- > 20 % less energy consumption and
- > hence 20 % less CO2-emissions

© Siemens AG 2017 – All rights reserved.

Slide 21 23rd of March 2017

Development and Engineering of ESS Knowledge of over 15 years will be used for upscaling and adaption of ESS for other application fields

SIEMENS

2014 – 2016f:

Due to sustainable engineering the knowhow transfer for further application fields is ensured by repetitive steps

© Siemens AG 2017 – All rights reserved.

Slide 22

23rd of March 2017

Development and Engineering of ESS Energy and power density of traction batteries were sustainably increased

SIEMENS

2009 NiMH

- 1 x 0.52 x 1.67 m³
- 825 kg + 75 kg
- 18 kWh
- +105 / -12 kW

2015 Lilon

- 1.2 x 0.67 x 1.7 m³
- 1040 kg + 60 kg
- 45 kWh
- +190 / -190 kW

Increase at nearly similar costs, improved cooling and full redundancy

Energy density

 volumetric (kWh/m³)
 ca. 60 %
 gravimetric (kWh/kg)
 > 100 %

 Power density

 discharging (kW/kg)
 ca. 50 %
 charging (kW/kg)
 ca. 1200 %

© Siemens AG 2017 – All rights reserved.

Slide 23 23rd of March 2017

Development and Engineering of ESS Knowhow transfer took place for bus and truck applications succesfully

SIEMENS

2014 eHighway, Li-Ion

- 120 kWh
- 300 kW
- Onboard charging: DC 750 V, output power 320 kW
- Offboard charging: 3 AC 400 V, output power 10 kW or 20 kW

© Siemens AG 2017 – All rights reserved.

Slide 24

23rd of March 2017

2015 Airport, Li-Ion

85 kWh

- Onboard charging: 3 AC 400 V to DC 700 V, output power 14 kW
- Offboard charging: DC 700 V, output power 30 kW or 60 kW

2016/17 Charger HPCC 2.0 for eBus

- Modular output power: 150, 300 ... 600 kW
- Output voltage: DC (0) 250 ... 750 V
- Flexible input: e.g. 3 AC 400 V to 20 kV, as well as DC 700 V

© Siemens AG 2017 – All rights reserved.

Slide 25

23rd of March 2017

Contact

Michael Meinert Senior Expert ESS

Head of CoE ESS MO TI SPA DE1

Werner-von-Siemens-Str. 65 91052 Erlangen

Telephon: +49 9131 7-21301 Mobil: +49 172 28 68 677

E-Mail:

michael.meinert@siemens.com

siemens.com/mobility

© Siemens AG 2017 – All rights reserved.

Slide 26

23rd of March 2017